Ortogonal

11/07/2012 4.092 Palabras

Ortogonalidad en espacios vectoriales Definición Formalmente, en un espacio vectorial con producto interior V, dos vectores x ∈ V {\displaystyle x\in V} e y ∈ V {\displaystyle y\in V} son ortogonales si el producto escalar de ⟨ x , y ⟩ {\displaystyle \langle x,y\rangle } es cero. Esta situación se denota x ⊥ y {\displaystyle x\perp y} . Además, un conjunto A se dice que es ortogonal a otro conjunto B, si cualquiera de los vectores de A es ortogonal a cualquiera de los vectores del conjunto B.

This website uses its own and third-party cookies in order to obtain statistical information based on the navigation data of our visitors. If you continue browsing, the acceptance of its use will be assumed, and in case of not accepting its installation you should visit the information section, where we explain how to remove or deny them.
OK | More info